
A.3 Calculus

A.15. Integration by parts is a technique for simplifying inte-
grals of the form ∫

a (x) b (x)dx.

In particular,∫
f (x) g′ (x)dx = f (x) g (x)−

∫
f ′ (x) g (x)dx. (58)

Sometimes it is easier to remember the formula if we write it in
differential form. Let u = f(x) and v = g(x). Then du = f ′(x)dx
and dv = g′(x)dx. Using the Substitution Rule, the integration by
parts formula becomes∫

udv = uv −
∫
vdu (59)

• The main goal in integration by parts is to choose u and dv

to obtain a new integral that is easier to evaluate then the
original. In other words, the goal of integration by parts is to
go from an integral

∫
udv that we dont see how to evaluate

to an integral
∫
vdu that we can evaluate.

• Note that when we calculate v from dv, we can use any of the
antiderivative. In other words, we may put in v + C instead
of v in (59). Had we included this constant of integration C
in (59), it would have eventually dropped out. This is always
the case in integration by parts.

For definite integrals, the formula corresponding to (58) is

b∫
a

f (x) g′ (x)dx = f (x) g (x)|ba −
b∫

a

f ′ (x) g (x)dx. (60)

The corresponding u and v notation is∫ b

a

udv = uv|ba −
∫ b

a

vdu (61)
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It is important to keep in mind that the variables u and v in
this formula are functions of x and that the limits of integration
in (61) are limits on the variable x. Sometimes it is helpful to
emphasize this by writing (61) as∫ b

x=a

udv = uv|bx=a −
∫ b

x=a

vdu (62)

Repeated application of integration by parts gives∫
f (x) g (x)dx = f (x)G1 (x)+

n−1∑
i=1

(−1)i f (i) (x)Gi+1 (x)+(−1)n
∫
f (n) (x)Gn (x) dx

(63)

where f (i) (x) = di

dxif (x), G1 (x) =
∫
g (x)dx, and Gi+1 (x) =∫

Gi (x)dx.
A convenient method for organizing the computations into two

columns is called tabular integration by parts shown in Figure
44 which can be used to derived (63).
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Figure 44: Integration by Parts
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Figure 45: Examples of Integration by Parts using Figure 44.
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Example A.16. Use integration by parts to compute the fol-
lowing integrals:

(a)
∫
x lnxdx.

(b)
∫
x2e−xdx.

Solution :

(a)
∫
x lnxdx = x2

2 lnx−
∫

x2

2
1
xdx =x2

2 lnx−1
2

∫
xdx =

x2

2
lnx− x2

4
+ C

(b)
∫
x2e−xdx =

(
x2
)

(−e−x) − (2x) (e−x) + (2) (−e−x) + C =

−e−x(x2 + 2x+ 2) + C .

A.17. Integration involving the Gaussian function : There
are several important results in probability that are derived from
such integrations. It is probably easier to remember or start with
the formula for the gaussian pdf because we know that it should
integrate to 1: ∫ ∞

−∞

1√
2πσ

e−
1
2(

x−m
σ )

2

dx = 1. (64)

To actually evaluate (prove) such an integral, we simplify it by a
change of variable to get an equivalent expression:

∞∫
−∞

1√
2π
e−

(x)2

2 dx = 1. (65)

Even this simplified form is quite tricky to evaluate. The typical
procedure is to consider the square of the integral: ∞∫

−∞

1√
2π
e−

(x)2

2 dx

2

=
1

2π

 ∞∫
−∞

e−
(x)2

2 dx

 ∞∫
−∞

e−
(y)2

2 dy

 .

After combining the product on the right into a double integral,
we change from Cartesian to polar coordinates. Let x = r cos(θ)
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and y = r sin(θ). In which case, x2 + y2 = r2 and dxdy = rdrdθ.
This gives ∞∫

−∞

1√
2π
e−

x2

2 dx

2

=
1

2π

 ∞∫
0

2π∫
0

re−
r2

2 dθdr


=

1

2π

 ∞∫
0

re−
r2

2

 2π∫
0

dθ

dr


=
1

2π

2π

∞∫
0

re−
r2

2 dr

 = − e− r
2

2

∣∣∣∞
0

= 1

which complete the proof.

Now that we have derive (65), it can then be used to show
several important results some of which are provided below.

Example A.18. Analytically derive the following facts:

(a)
∞∫
−∞

e−αx
2

dx =
√

π
α for α > 0.

(b)
∞∫
−∞

x 1√
2π
e−

x2

2 dx = 0

Remark: This shows that E [X] = 0 when X ∼ N (0, 1).

(c)
∞∫
−∞

x2 1√
2π
e−

x2

2 dx = 1.

Hint: Write x2e−
x2

2 as

x2e−
x2

2 = x× xe−x
2

2

and use integration by parts.

Remark: This shows that E
[
X2
]

= VarX = 1 when X ∼
N (0, 1).

(d)
∞∫
−∞

x2e−αx
2

dx = 1
2

√
π
α3 for α > 0.
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(e)
∞∫
0

x2e−αx
2

dx = 1
4

√
π
α3 for α > 0.

(f)
∞∫
−∞

esx 1√
2π
e−

x2

2 dx = e
1
2s

2

.

Hint: Completing the square: x2 − 2sx = (x− s)2 − s2.

Remark: This shows that when X ∼ N (0, 1),

E
[
esX
]

= e
1
2s

2

.

To find the Fourier transform of fX , simply substitute s =
−jω = −j2πf to get

E
[
e−jωX

]
= e−

1
2ω

2

= e−2π2f2

.

To find characteristic function of the standard Gaussian X,
we substitute s = jt to get

ϕX(t) = E
[
ejtX

]
= e−

1
2 t

2

.

(g) When X ∼ N (m,σ2),

(i) E
[
esX
]

= esm+ 1
2s

2σ2

.

(ii) Fourier transform:

F {fX} =

∞∫
−∞

fX (x) e−jωxdx = e−jωm−
1
2ω

2σ2

= e−j2πfm−2π2f2σ2

.

(iii) Characteristic function:

ϕX(t) = E
[
ejtX

]
= ejtm−

1
2 t

2σ2

Solution :

(a) Let y =
√

2αx. Then, 1
2y

2 = αx2 and dx = 1√
2α
dy. Hence,

∞∫
−∞

e−αx
2

dx =
1√
2α

∞∫
−∞

e−
1
2y

2

dy.
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We have already shown (65) which says that
∞∫
−∞

1√
2π
e−

1
2y

2

dy =

1. Hence,
∞∫
−∞

e−
1
2y

2

dy =
√

2π and

∞∫
−∞

e−αx
2

dx =
1√
2α

∞∫
−∞

e−
1
2y

2

dy =

√
2π√
2α

=

√
π

α
.

(b) xe−
(x)2

2 is an odd function.

(c) Use integration by parts: separating

x2e−
x2

2 = x× xe−x
2

2

to get

∞∫
−∞

x2e−
x2

2 dx = −xe−x
2

2

∣∣∣∞
−∞

+

∞∫
−∞

e−
x2

2 dx =
√

2π

(d) Let y =
√

2αx. Then, 1
2y

2 = αx2 and dx = 1√
2α
dy. Hence,

∞∫
−∞

x2e−αx
2

dx =

∞∫
−∞

1

2α
y2e−

1
2y

2 1√
2α
dy

=

√
2π

(2α)
3
2

∞∫
−∞

1√
2π
y2e−

1
2y

2

dy

=

√
2π

(2α)
3
2

(e) x2e−αx
2

is an even function. Hence,

∞∫
−∞

x2e−αx
2

dx = 2

∞∫
0

x2e−αx
2

dx.
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(f) Applying the hint, we have

∞∫
−∞

1√
2π
esxe−

x2

2 dx =

∞∫
−∞

1√
2π
e−

1
2(x2−2sx+s2)e

1
2s

2

dx

= e
1
2s

2

∞∫
−∞

1√
2π
e−

1
2 (x−s)2

dx = e
1
2s

2

(g) For X ∼ N (m,σ2), we have

fX (x) =
1√
2πσ

e−
1
2(

x−m
σ )

2

.

(i)

E
[
esX
]

=

∞∫
−∞

esx
1√
2πσ

e−
1
2(

x−m
σ )

2

dx

=

∞∫
−∞

es(σy+m) 1√
2πσ

e−
1
2y

2

σdy

= esm
∞∫

−∞

esσy
1√
2π
e−

1
2y

2

dy = esme
1
2 (sσ)

2

= esm+ 1
2s

2σ2

(ii) To find the Fourier transform of fX , simply substitute
s = −jω = −j2πf into the answer from part (g.i).

(iii) To find characteristic function of the standard Gaussian
X, we substitute s = jt into the answer from part (g.i).
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